top of page

Research using WaveSim

Publications that have cited references [1] and [2] are listed below (extracted from Scopus on 01/05/2024).

  1. Van Der Sijs, T. A., El Gawhary, O., & Urbach, H. P. (2024). Padé approximants of the Born series of electromagnetic scattering by a diffraction grating. Physical Review A, 109(3). doi:10.1103/PhysRevA.109.033522

  2. Verrier, N., Debailleul, M., & Haeberlé, O. (2024). Recent Advances and Current Trends in Transmission Tomographic Diffraction Microscopy. Sensors, 24(5). doi:10.3390/s24051594

  3. Shekhar, U., Jakobsen, M., Iversen, E., Berre, I., & Radu, F. A. (2024). Microseismic wavefield modelling in anisotropic elastic media using integral equation method. Geophysical Prospecting, 72(2), 403–423. doi:10.1111/1365-2478.13416

  4. Treister, E., & Yovel, R. (2024). A hybrid shifted Laplacian multigrid and domain decomposition preconditioner for the elastic Helmholtz equations. Journal of Computational Physics, 497. doi:10.1016/

  5. Ball, J. M., & Li, W. (2024). Using high-resolution microscopy data to generate realistic structures for electromagnetic FDTD simulations from complex biological models. Nature Protocols. doi:10.1038/s41596-023-00947-z

  6. He, P., Liu, J., Gu, H., Zhu, J., Jiang, H., & Liu, S. (2023). EUV mask model based on modified Born series. Optics Express, 31(17), 27797–27809. doi:10.1364/OE.498260

  7. Huang, X. (2023). Full wavefield inversion with internal multiples: Nonlinear Bayesian inverse multiple scattering theory beyond the Born approximation. Geophysics, 88(6), 1–54. doi:10.1190/geo2022-0604.1

  8. Moser, S., Jesacher, A., & Ritsch-Marte, M. (2023). Efficient and accurate intensity diffraction tomography of multiple-scattering samples. Optics Express, 31(11), 18274–18289. doi:10.1364/OE.486296

  9. Stanziola, A., Arridge, S., Cox, B. T., & Treeby, B. E. (2023). A learned Born series for highly-scattering media. JASA Express Letters, 3(5). doi:10.1121/10.0017937

  10. Xiang, K., Jakobsen, M., Eikrem, K. S., & Nævdal, G. (2023). A matrix-free variant of the distorted Born iterative method for seismic full-waveform inversion. Geophysical Prospecting, 71(3), 431–442. doi:10.1111/1365-2478.13323

  11. Ye, W., Huang, X., Han, L., Vatankhah, S., & Zhang, P. (2023). Bayesian inverse scattering theory for multi-parameter full-waveform inversion in transversely isotropic media. Geophysics, 88(3). doi:10.1190/geo2022-0140.1

  12. Mandal, U., Singh, J., & Saha, R. K. (2023). On the Born series methods for solving inhomogeneous Helmholtz equation in biomedical photoacoustics. 12631. doi:10.1117/12.2670935

  13. Protasov, M., Gadylshin, K., Neklyudov, D., & Klimes, L. (2023). Full Waveform Inversion Based on an Asymptotic Solution of Helmholtz Equation. Geosciences (Switzerland), 13(1). doi:10.3390/geosciences13010019

  14. Gigan, S., Katz, O., De Aguiar, H. B., Andresen, E. R., Aubry, A., Bertolotti, J., Bossy, E., Bouchet, D., Brake, J., Brasselet, S., Bromberg, Y., Cao, H., Chaigne, T., Cheng, Z., Choi, W., Čižmár, T., Cui, M., Curtis, V. R., Defienne, H., … Yılmaz, H. (2022). Roadmap on wavefront shaping and deep imaging in complex media. JPhys Photonics, 4(4).

  15. Lin, H.-C., Wang, Z., & Hsu, C. W. (2022). Fast multi-source nanophotonic simulations using augmented partial factorization. Nature Computational Science, 2(12), 815–822. doi:10.1038/s43588-022-00370-6

  16. Pang, S., & Barbastathis, G. (2022). Unified treatment of exact and approximate scalar electromagnetic wave scattering. Physical Review E, 106(7). doi:10.1103/PhysRevE.106.045301

  17. Brütt, C., Aubry, A., Gérardin, B., Derode, A., & Prada, C. (2022). Weight of single and recurrent scattering in the reflection matrix of complex media. Physical Review E, 106(2). doi:10.1103/PhysRevE.106.025001

  18. Tournier, P.-H., Jolivet, P., Dolean, V., Aghamiry, H. S., Operto, S., & Riffo, S. (2022). Three-dimensional finite-difference finite-element frequency-domain wave simulation with multi-level optimized additive Schwarz domain-decomposition preconditioner: A tool for FWI of sparse node datasets. Geophysics, 87(5). doi:10.1190/geo2021-0702.1

  19. Maiwöger, M., Sonnleitner, M., Zhang, T., Mazets, I., Mallweger, M., Rätzel, D., … Haslinger, P. (2022). Observation of Light-Induced Dipole-Dipole Forces in Ultracold Atomic Gases. Physical Review X, 12(3). doi:10.1103/PhysRevX.12.031018

  20. Aghamiry, H. S., Gholami, A., Combe, L., & Operto, S. (2022). Accurate 3D frequency-domain seismic wave modeling with the wavelength-adaptive 27-point finite-difference stencil: A tool for full-waveform inversion. Geophysics, 87(3), R305–R324. doi:10.1190/geo2021-0606.1

  21. Zhao, N. Z., Boutami, S., & Fan, S. (2022). Efficient method for accelerating line searches in adjoint optimization of photonic devices by combining Schur complement domain decomposition and Born series expansions. Optics Express, 30(4), 6413–6424. doi:10.1364/OE.451718

  22. Lee, M., Hugonnet, H., & Park, Y. (2022). Inverse problem solver for multiple light scattering using modified Born series. Optica, 9(2), 177–182. doi:10.1364/OPTICA.446511

  23. Saini, S. K., Marakis, E., & Pinkse, P. W. H. (2022). Design and Fabrication of Controlled Photonic Multiple Scattering Media. In Optica Advanced Photonics Congress 2022, Technical Digest Series (Optica Publishing Group, 2022), paper NoTh1E.4.

  24. Aghamiry, H., Gholami, A., & Operto, S. (2022). Highly-accurate wavefield reconstruction inversion using convergent Born series. 83rd EAGE Conference and Exhibition 2022, 2, 1118–1122.

  25. Xiang, K., Eikrem, K. S., Jakobsen, M., & Nævdal, G. (2022). Homotopy scattering series for seismic forward modelling with variable density and velocity. Geophysical Prospecting, 70(1), 3–18. doi:10.1111/1365-2478.13143

  26. Koldeweij, R. B. J., Kant, P., Harth, K., De Ruiter, R., Gelderblom, H., Snoeijer, J. H., … Van Limbeek, M. A. J. (2021). Initial solidification dynamics of spreading droplets. Physical Review Fluids, 6(12). doi:10.1103/PhysRevFluids.6.L121601

  27. Wang, Y., & Dong, L. (2021). Adomian decomposition method of integral equations for scattered waves [散射波积分方程的Adomian分解解法]. Acta Geophysica Sinica, 64(10), 3701–3717. doi:10.6038/cjg2021O0298

  28. Lopez-Menchon, H., Rius, J. M., Heldring, A., & Ubeda, E. (2021). Acceleration of Born Series by Change of Variables. IEEE Transactions on Antennas and Propagation, 69(9), 5750–5760. doi:10.1109/TAP.2021.3060834

  29. Xu, Y., Sun, J., & Shang, Y. (2021). A parallel computation method for scattered seismic waves using Nyström discretization and FFT fast convolution [一种利用Nyström离散与FFT快速褶积的散射地震波并行计算方法]. Acta Geophysica Sinica, 64(8), 2877–2887. doi:10.6038/cjg2021O0391

  30. Saha, R. K. (2021). Solving time-independent inhomogeneous optoacoustic wave equation numerically with a modified Green’s function approach. Journal of the Acoustical Society of America, 149(6), 4039–4048. doi:10.1121/10.0005041

  31. Huang, X. (2021). Integral Equation Methods with Multiple Scattering and Gaussian Beams in Inhomogeneous Background Media for Solving Nonlinear Inverse Scattering Problems. IEEE Transactions on Geoscience and Remote Sensing, 59(6), 5345–5351. doi:10.1109/TGRS.2020.3019221

  32. Breban, R. (2021). Electromagnetism from 5D gravity: beyond the Maxwell equations. European Physical Journal Plus, 136(4). doi:10.1140/epjp/s13360-021-01440-w

  33. Huang, X., & Greenhalgh, S. (2021). A finite-difference iterative solver of the Helmholtz equation for frequency-domain seismic wave modeling and full-waveform inversion. Geophysics, 86(2), T107–T116. doi:10.1190/geo2020-0411.1

  34. Eikrem, K. S., Nævdal, G., & Jakobsen, M. (2021). Iterative solution of the Lippmann-Schwinger equation in strongly scattering acoustic media by randomized construction of preconditioners. Geophysical Journal International, 224(3), 2121–2130. doi:10.1093/gji/ggaa503

  35. Xu, Y., Sun, J., Shang, Y., Meng, X., & Wei, P. (2021). The generalized over-relaxation iterative method for Lippmann-Schwinger equation and its convergence [Lippmann-Schwinger积分方程广义超松弛迭代解法及其收敛特性]. Acta Geophysica Sinica, 64(1), 249–262. doi:10.6038/cjg2021O0105

  36. Paramonov, P., Lumbeeck, L.-P., Sijbers, J., & de Beenhouwer, J. (2021). A study of terahertz beam simulation with ray tracing for computed tomography. In OSA Optical Sensors and Sensing Congress 2021 (AIS, FTS, HISE, SENSORS, ES), OSA Technical Digest (Optica Publishing Group, 2021), paper JTu5A.37.

  37. Zhou, K. C., Qian, R., Dhalla, A.-H., Farsiu, S., & Izatt, J. A. (2021). Unified k-space theory of optical coherence tomography. Advances in Optics and Photonics, 13(2), 462–514. doi:10.1364/AOP.417102

  38. Saha, R. K. (2020). Numerical solution to the time-independent inhomogeneous photoacoustic wave equation using the Born series methods. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 37(12), 1907–1915. doi:10.1364/JOSAA.402471

  39. Abhishek, A., Bonnet, M., & Moskow, S. (2020). Modified forward and inverse Born series for the Calderon and diffuse-wave problems. Inverse Problems, 36(11). doi:10.1088/1361-6420/abae11

  40. Thendiyammal, A., Osnabrugge, G., Knop, T., & Vellekoop, I. M. (2020). Model-based wavefront shaping microscopy. Optics Letters, 45(18), 5101–5104. doi:10.1364/OL.400985

  41. Kaushik, A., & Saha, R. K. (2020). A numerical solution of phototacoustic wave equation for red blood cell by the Born series methods. doi:10.1364/FIO.2020.JTu1B.19

  42. Matlock, A., & Tian, L. (2020). Physics-embedded deep learning for intensity diffraction tomography. doi:10.1364/FIO.2020.FTu2B.1

  43. Huang, X., Eikrem, K. S., Jakobsen, M., & Nævdal, G. (2020). Bayesian full-waveform inversion in anisotropic elastic media using the iterated extended Kalman filter. Geophysics, 85(4), C125–C139. doi:10.1190/geo2019-0644.1

  44. Kaushik, A., Yalavarthy, P. K., & Saha, R. K. (2020). Convergent Born series improves the accuracy of numerical solution of time-independent photoacoustic wave equation. Journal of Modern Optics, 67(9), 849–855. doi:10.1080/09500340.2020.1777334

  45. Jakobsen, M., Wu, R.-S., & Huang, X. (2020). Convergent scattering series solution of the inhomogeneous Helmholtz equation via renormalization group and homotopy continuation approaches. Journal of Computational Physics, 409. doi:10.1016/

  46. Jakobsen, M., Huang, X., & Wu, R.-S. (2020). Homotopy analysis of the Lippmann-Schwinger equation for seismic wavefield modelling in strongly scattering media. Geophysical Journal International, 222(2), 743–753. doi:10.1093/gji/ggaa159

  47. Konda, P. C., Loetgering, L., Zhou, K. C., Xu, S., Harvey, A. R., & Horstmeyer, R. (2020). Fourier ptychography: Current applications and future promises. Optics Express, 28(7), 9603–9630. doi:10.1364/OE.386168

  48. Huang, X., Jakobsen, M., & Wu, R.-S. (2020a). On the applicability of a renormalized Born series for seismic wavefield modelling in strongly scattering media. Journal of Geophysics and Engineering, 17(2), 277–299. doi:10.1093/jge/gxz105

  49. Vettenburg, T. (2020). Towards single-photon deep-tissue microscopy. 11521. doi:10.1117/12.2573210

  50. Huang, X., Jakobsen, M., & Wu, R.-S. (2020b). Taming the divergent terms in the scattering series of Born by renormalization. 5065–5069. doi:10.1190/segam2019-3216450.1

  51. Huang, X., Jakobsen, M., & Wu, R.-S. (2019). Taming the divergent terms in the scattering series of Born by renormalization. 5065–5069. doi:10.1190/segam2019-3216450.1

  52. Tahir, W., Kamilov, U. S., & Tian, L. (2019). Holographic particle localization under multiple scattering. Advanced Photonics, 1(3). doi:10.1117/1.AP.1.3.036003

  53. Vettenburg, T., Horsley, S. A. R., & Bertolotti, J. (2019). Calculating coherent light-wave propagation in large heterogeneous media. Optics Express, 27(9), 11946–11967. doi:10.1364/OE.27.011946

  54. Tao, M., Li, Z., Cao, W., Li, X., & Wu, C. (2019). Stress redistribution of dynamic loading incident with arbitrary waveform through a circular cavity. International Journal for Numerical and Analytical Methods in Geomechanics, 43(6), 1279–1299. doi:10.1002/nag.2897

  55. Jakobsen, M., Wu, R.-S., & Huang, X. (2019). Seismic waveform modelling in strongly scattering media using renormalization group theory. 5007–5011. doi:10.1190/segam2018-2992001.1

  56. Yang, Z., Jiang, G., Tang, H., Sun, B., & Yang, Y. (2019). Dynamic analysis of a cylindrical cavity in inhomogeneous elastic half-space subjected to SH waves. Mathematics and Mechanics of Solids, 24(1), 299–311. doi:10.1177/1081286517739520

  57. Jakobsen, M., & Tveit, S. (2018). Distorted Born iterative T-matrix method for inversion of CSEM data in anisotropic media. Geophysical Journal International, 214(3), 1524–1537. doi:10.1093/GJI/GGY197

  58. Jakobsen, M., Wu, R.-S., & Huang, X. (2018). Seismic waveform modelling in strongly scattering media using renormalization group theory. 5007–5011. doi:10.1190/segam2018-2992001.1

  59. Weigert, M., Subramanian, K., Bundschuh, S. T., Myers, E. W., & Kreysing, M. (2018). Biobeam—Multiplexed wave-optical simulations of light-sheet microscopy. PLoS Computational Biology, 14(4). doi:10.1371/journal.pcbi.1006079

  60. Malovichko, M., Khokhlov, N., Yavich, N., & Zhdanov, M. (2018). Acoustic 3D modeling by the method of integral equations. Computers and Geosciences, 111, 223–234. doi:10.1016/j.cageo.2017.11.015

  61. Krüger, B., Brenner, T., & Kienle, A. (2017). Solution of the inhomogeneous Maxwell’s equations using a Born series. Optics Express, 25(21), 25165–25182. doi:10.1364/OE.25.025165

  62. Yang, Z., Zhang, C., Yang, Y., & Sun, B. (2017). Scattering of out-plane wave by a circular cavity near the right-angle interface in the exponentially inhomogeneous media. Wave Motion, 72, 354–362. doi:10.1016/j.wavemoti.2017.04.010

  63. De Aguiar, H. B., Gigan, S., & Brasselet, S. (2017). Polarization recovery through scattering media. Science Advances, 3(9). doi:10.1126/sciadv.1600743


Stay tuned...

bottom of page