top of page

Research Using WaveSim

Publications that have cited references Osnabrugge et al. (2016) and Osnabrugge et al. (2021) are listed below (extracted from Scopus on 09/08/2024).

  1. Xu, Y., et al. ‘Computation of Green’s Function in a Strongly Heterogeneous Medium Using the Lippmann–Schwinger Equation: A Generalized Successive Over-Relaxion plus Preconditioning Scheme’. Mathematics, vol. 12, no. 13, 2024, https://doi.org/10.3390/math12132066

  2. Li, Z., et al. ‘Mask Structure Optimization for beyond EUV Lithography’. Optics Letters, vol. 49, no. 13, 2024, pp. 3604–3607, https://doi.org/10.1364/OL.523596

  3. Sun, H., and J. Sun. ‘Acoustic Wave Propagation and Scattering in Visco-Acoustic Medium: Integral Equation Representation and De Wolf Approximation’. Journal of Applied Geophysics, vol. 225, 2024, https://doi.org/10.1016/j.jappgeo.2024.105394

  4. Ball, J. M., and W. Li. ‘Using High-Resolution Microscopy Data to Generate Realistic Structures for Electromagnetic FDTD Simulations from Complex Biological Models’. Nature Protocols, vol. 19, no. 5, 2024, pp. 1348–1380, https://doi.org/10.1038/s41596-023-00947-z

  5. Van Der Sijs, T. A., et al. ‘Padé Approximants of the Born Series of Electromagnetic Scattering by a Diffraction Grating’. Physical Review A, vol. 109, no. 3, 2024, https://doi.org/10.1103/PhysRevA.109.033522

  6. Verrier, N., et al. ‘Recent Advances and Current Trends in Transmission Tomographic Diffraction Microscopy’. Sensors, vol. 24, no. 5, 2024, https://doi.org/10.3390/s24051594

  7. Shekhar, U., et al. ‘Microseismic Wavefield Modelling in Anisotropic Elastic Media Using Integral Equation Method’. Geophysical Prospecting, vol. 72, no. 2, 2024, pp. 403–423, https://doi.org/10.1111/1365-2478.13416

  8. Treister, E., and R. Yovel. ‘A Hybrid Shifted Laplacian Multigrid and Domain Decomposition Preconditioner for the Elastic Helmholtz Equations’. Journal of Computational Physics, vol. 497, 2024, https://doi.org/10.1016/j.jcp.2023.112622

  9. van der Sijs, T. A., et al. Born-Padé Method for Scattering by a Diffraction Grating: S Polarization. Vol. 12991, 2024, https://doi.org/10.1117/12.3015272

  10. He, P., et al. ‘EUV Mask Model Based on Modified Born Series’. Optics Express, vol. 31, no. 17, 2023, pp. 27797–27809, https://doi.org/10.1364/OE.498260

  11. Huang, X. ‘Full Wavefield Inversion with Internal Multiples: Nonlinear Bayesian Inverse Multiple Scattering Theory beyond the Born Approximation’. Geophysics, vol. 88, no. 6, 2023, pp. 1–54, https://doi.org/10.1190/geo2022-0604.1

  12. Moser, S., et al. ‘Efficient and Accurate Intensity Diffraction Tomography of Multiple-Scattering Samples’. Optics Express, vol. 31, no. 11, 2023, pp. 18274–18289, https://doi.org/10.1364/OE.486296

  13. Stanziola, A., et al. ‘A Learned Born Series for Highly-Scattering Media’. JASA Express Letters, vol. 3, no. 5, 2023, https://doi.org/10.1121/10.0017937

  14. Xiang, K., M. Jakobsen, et al. ‘A Matrix-Free Variant of the Distorted Born Iterative Method for Seismic Full-Waveform Inversion’. Geophysical Prospecting, vol. 71, no. 3, 2023, pp. 431–442, https://doi.org/10.1111/1365-2478.13323

  15. Ye, W., et al. ‘Bayesian Inverse Scattering Theory for Multi-Parameter Full-Waveform Inversion in Transversely Isotropic Media’. Geophysics, vol. 88, no. 3, 2023, https://doi.org/10.1190/geo2022-0140.1

  16. Mandal, U., et al. On the Born Series Methods for Solving Inhomogeneous Helmholtz Equation in Biomedical Photoacoustics. Vol. 12631, 2023, https://doi.org/10.1117/12.2670935

  17. Protasov, M., et al. ‘Full Waveform Inversion Based on an Asymptotic Solution of Helmholtz Equation’. Geosciences (Switzerland), vol. 13, no. 1, 2023, https://doi.org/10.3390/geosciences13010019

  18. Gigan, S., et al. ‘Roadmap on Wavefront Shaping and Deep Imaging in Complex Media’. JPhys Photonics, vol. 4, no. 4, 2022, https://doi.org/10.1088/2515-7647/ac76f9

  19. Lin, H. C., et al. ‘Fast Multi-Source Nanophotonic Simulations Using Augmented Partial Factorization’. Nature Computational Science, vol. 2, no. 12, 2022, pp. 815–822, https://doi.org/10.1038/s43588-022-00370-6

  20. Pang, S., and G. Barbastathis. ‘Unified Treatment of Exact and Approximate Scalar Electromagnetic Wave Scattering’. Physical Review E, vol. 106, no. 7, 2022, https://doi.org/10.1103/PhysRevE.106.045301

  21. Brütt, C., et al. ‘Weight of Single and Recurrent Scattering in the Reflection Matrix of Complex Media’. Physical Review E, vol. 106, no. 2, 2022, https://doi.org/10.1103/PhysRevE.106.025001

  22. Tournier, P. H., et al. ‘Three-Dimensional Finite-Difference Finite-Element Frequency-Domain Wave Simulation with Multi-Level Optimized Additive Schwarz Domain-Decomposition Preconditioner: A Tool for FWI of Sparse Node Datasets’. Geophysics, vol. 87, no. 5, 2022, https://doi.org/10.1190/geo2021-0702.1

  23. Maiwöger, M., et al. ‘Observation of Light-Induced Dipole-Dipole Forces in Ultracold Atomic Gases’. Physical Review X, vol. 12, no. 3, 2022, https://doi.org/10.1103/PhysRevX.12.031018

  24. Aghamiry, H. S., et al. ‘Accurate 3D Frequency-Domain Seismic Wave Modeling with the Wavelength-Adaptive 27-Point Finite-Difference Stencil: A Tool for Full-Waveform Inversion’. Geophysics, vol. 87, no. 3, 2022, pp. R305–R324, https://doi.org/10.1190/geo2021-0606.1

  25. Zhao, N. Z., et al. ‘Efficient Method for Accelerating Line Searches in Adjoint Optimization of Photonic Devices by Combining Schur Complement Domain Decomposition and Born Series Expansions’. Optics Express, vol. 30, no. 4, 2022, pp. 6413–6424, https://doi.org/10.1364/OE.451718

  26. Lee, M., et al. ‘Inverse Problem Solver for Multiple Light Scattering Using Modified Born Series’. Optica, vol. 9, no. 2, 2022, pp. 177–182, https://doi.org/10.1364/OPTICA.446511

  27. Saini, S. K., et al. Design and Fabrication of Controlled Photonic Multiple Scattering Media. 2022, https://www.scopus.com/inward/record.uri?eid=2-s2.0-85146717156&partnerID=40&md5=cffcc8e6e4909cdfc979b993c935a9cc

  28. Aghamiry, H., et al. HIGHLY-ACCURATE WAVEFIELD RECONSTRUCTION INVERSION USING CONVERGENT BORN SERIES. Vol. 2, 2022, pp. 1118–1122, https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142661805&partnerID=40&md5=1a16bfca66b52030989d808dda629086

  29. Xiang, K., K. S. Eikrem, et al. ‘Homotopy Scattering Series for Seismic Forward Modelling with Variable Density and Velocity’. Geophysical Prospecting, vol. 70, no. 1, 2022, pp. 3–18, https://doi.org/10.1111/1365-2478.13143

  30. Koldeweij, R. B. J., et al. ‘Initial Solidification Dynamics of Spreading Droplets’. Physical Review Fluids, vol. 6, no. 12, 2021, https://doi.org/10.1103/PhysRevFluids.6.L121601

  31. Wang, Y., and L. Dong. ‘Adomian Decomposition Method of Integral Equations for Scattered Waves [散射波积分方程的Adomian分解解法]’. Acta Geophysica Sinica, vol. 64, no. 10, 2021, pp. 3701–3717, https://doi.org/10.6038/cjg2021O0298

  32. Lopez-Menchon, H., et al. ‘Acceleration of Born Series by Change of Variables’. IEEE Transactions on Antennas and Propagation, vol. 69, no. 9, 2021, pp. 5750–5760, https://doi.org/10.1109/TAP.2021.3060834

  33. Xu, Y., J. Sun, and Y. Shang. ‘A Parallel Computation Method for Scattered Seismic Waves Using Nyström Discretization and FFT Fast Convolution [一种利用Nyström离散与FFT快速褶积的散射地震波并行计算方法]’. Acta Geophysica Sinica, vol. 64, no. 8, 2021, pp. 2877–2887, https://doi.org/10.6038/cjg2021O0391

  34. Saha, R. K. ‘Solving Time-Independent Inhomogeneous Optoacoustic Wave Equation Numerically with a Modified Green’s Function Approach’. Journal of the Acoustical Society of America, vol. 149, no. 6, 2021, pp. 4039–4048, https://doi.org/10.1121/10.0005041

  35. Huang, X. ‘Integral Equation Methods with Multiple Scattering and Gaussian Beams in Inhomogeneous Background Media for Solving Nonlinear Inverse Scattering Problems’. IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 6, 2021, pp. 5345–5351, https://doi.org/10.1109/TGRS.2020.3019221

  36. Breban, R. ‘Electromagnetism from 5D Gravity: Beyond the Maxwell Equations’. European Physical Journal Plus, vol. 136, no. 4, 2021, https://doi.org/10.1140/epjp/s13360-021-01440-w

  37. Huang, X., and S. Greenhalgh. ‘A Finite-Difference Iterative Solver of the Helmholtz Equation for Frequency-Domain Seismic Wave Modeling and Full-Waveform Inversion’. Geophysics, vol. 86, no. 2, 2021, pp. T107–T116, https://doi.org/10.1190/geo2020-0411.1

  38. Eikrem, K. S., et al. ‘Iterative Solution of the Lippmann-Schwinger Equation in Strongly Scattering Acoustic Media by Randomized Construction of Preconditioners’. Geophysical Journal International, vol. 224, no. 3, 2021, pp. 2121–2130, https://doi.org/10.1093/gji/ggaa503

  39. Xu, Y., et al. ‘The Generalized Over-Relaxation Iterative Method for Lippmann-Schwinger Equation and Its Convergence [Lippmann-Schwinger积分方程广义超松弛迭代解法及其收敛特性]’. Acta Geophysica Sinica, vol. 64, no. 1, 2021, pp. 249–262, https://doi.org/10.6038/cjg2021O0105

  40. Paramonov, P., et al. A Study of Terahertz Beam Simulation with Ray Tracing for Computed Tomography. 2021, https://www.scopus.com/inward/record.uri?eid=2-s2.0-85119370892&partnerID=40&md5=98637e02ce76d437e0d003cc509a3b9c

  41. Zhou, K. C., et al. ‘Unified K-Space Theory of Optical Coherence Tomography’. Advances in Optics and Photonics, vol. 13, no. 2, 2021, pp. 462–514, https://doi.org/10.1364/AOP.417102

  42. Saha, R. K. ‘Numerical Solution to the Time-Independent Inhomogeneous Photoacoustic Wave Equation Using the Born Series Methods’. Journal of the Optical Society of America A: Optics and Image Science, and Vision, vol. 37, no. 12, 2020, pp. 1907–1915, https://doi.org/10.1364/JOSAA.402471

  43. Abhishek, A., et al. ‘Modified Forward and Inverse Born Series for the Calderon and Diffuse-Wave Problems’. Inverse Problems, vol. 36, no. 11, 2020, https://doi.org/10.1088/1361-6420/abae11

  44. Thendiyammal, A., et al. ‘Model-Based Wavefront Shaping Microscopy’. Optics Letters, vol. 45, no. 18, 2020, pp. 5101–5104, https://doi.org/10.1364/OL.400985

  45. Kaushik, A., and R. K. Saha. A Numerical Solution of Phototacoustic Wave Equation for Red Blood Cell by the Born Series Methods. 2020, https://doi.org/10.1364/FIO.2020.JTu1B.19

  46. Matlock, A., and L. Tian. Physics-Embedded Deep Learning for Intensity Diffraction Tomography. 2020, https://doi.org/10.1364/FIO.2020.FTu2B.1

  47. Huang, X., K. S. Eikrem, et al. ‘Bayesian Full-Waveform Inversion in Anisotropic Elastic Media Using the Iterated Extended Kalman Filter’. Geophysics, vol. 85, no. 4, 2020, pp. C125–C139, https://doi.org/10.1190/geo2019-0644.1

  48. Kaushik, A., et al. ‘Convergent Born Series Improves the Accuracy of Numerical Solution of Time-Independent Photoacoustic Wave Equation’. Journal of Modern Optics, vol. 67, no. 9, 2020, pp. 849–855, https://doi.org/10.1080/09500340.2020.1777334

  49. Jakobsen, M., R. S. Wu, et al. ‘Convergent Scattering Series Solution of the Inhomogeneous Helmholtz Equation via Renormalization Group and Homotopy Continuation Approaches’. Journal of Computational Physics, vol. 409, 2020, https://doi.org/10.1016/j.jcp.2020.109343

  50. Jakobsen, M., X. Huang, et al. ‘Homotopy Analysis of the Lippmann-Schwinger Equation for Seismic Wavefield Modelling in Strongly Scattering Media’. Geophysical Journal International, vol. 222, no. 2, 2020, pp. 743–753, https://doi.org/10.1093/gji/ggaa159

  51. Konda, P. C., et al. ‘Fourier Ptychography: Current Applications and Future Promises’. Optics Express, vol. 28, no. 7, 2020, pp. 9603–9630, https://doi.org/10.1364/OE.386168

  52. Huang, X., M. Jakobsen, et al. ‘On the Applicability of a Renormalized Born Series for Seismic Wavefield Modelling in Strongly Scattering Media’. Journal of Geophysics and Engineering, vol. 17, no. 2, 2020, pp. 277–299, https://doi.org/10.1093/jge/gxz105

  53. Vettenburg, T. ‘Towards Single-Photon Deep-Tissue Microscopy’. Vol. 11521, 2020, https://doi.org/10.1117/12.2573210

  54. Huang, X., et al. ‘Taming the Divergent Terms in the Scattering Series of Born by Renormalization’. 2020, pp. 5065–5069, https://doi.org/10.1190/segam2019-3216450.1

  55. Huang, X., et al. ‘Taming the Divergent Terms in the Scattering Series of Born by Renormalization’. 2019, pp. 5065–5069, https://doi.org/10.1190/segam2019-3216450.1

  56. Tahir, W., et al. ‘Holographic Particle Localization under Multiple Scattering’. Advanced Photonics, vol. 1, no. 3, 2019, https://doi.org/10.1117/1.AP.1.3.036003

  57. Vettenburg, T., et al. ‘Calculating Coherent Light-Wave Propagation in Large Heterogeneous Media’. Optics Express, vol. 27, no. 9, 2019, pp. 11946–11967, https://doi.org/10.1364/OE.27.011946

  58. Tao, M., et al. ‘Stress Redistribution of Dynamic Loading Incident with Arbitrary Waveform through a Circular Cavity’. International Journal for Numerical and Analytical Methods in Geomechanics, vol. 43, no. 6, 2019, pp. 1279–1299, https://doi.org/10.1002/nag.2897

  59. Jakobsen, M., R. S. Wu, et al. Seismic Waveform Modelling in Strongly Scattering Media Using Renormalization Group Theory. 2019, pp. 5007–5011, https://doi.org/10.1190/segam2018-2992001.1

  60. Yang, Z., G. Jiang, et al. ‘Dynamic Analysis of a Cylindrical Cavity in Inhomogeneous Elastic Half-Space Subjected to SH Waves’. Mathematics and Mechanics of Solids, vol. 24, no. 1, 2019, pp. 299–311, https://doi.org/10.1177/1081286517739520

  61. Jakobsen, M., and S. Tveit. ‘Distorted Born Iterative T-Matrix Method for Inversion of CSEM Data in Anisotropic Media’. Geophysical Journal International, vol. 214, no. 3, 2018, pp. 1524–1537, https://doi.org/10.1093/GJI/GGY197

  62. Jakobsen, M., et al. Seismic Waveform Modelling in Strongly Scattering Media Using Renormalization Group Theory. 2018, pp. 5007–5011, https://doi.org/10.1190/segam2018-2992001.1

  63. Weigert, M., et al. ‘Biobeam—Multiplexed Wave-Optical Simulations of Light-Sheet Microscopy’. PLoS Computational Biology, vol. 14, no. 4, 2018, https://doi.org/10.1371/journal.pcbi.1006079

  64. Malovichko, M., et al. ‘Acoustic 3D Modeling by the Method of Integral Equations’. Computers and Geosciences, vol. 111, 2018, pp. 223–234, https://doi.org/10.1016/j.cageo.2017.11.015

  65. Krüger, B., et al. ‘Solution of the Inhomogeneous Maxwell’s Equations Using a Born Series’. Optics Express, vol. 25, no. 21, 2017, pp. 25165–25182, https://doi.org/10.1364/OE.25.025165

  66. Yang, Z., C. Zhang, et al. ‘Scattering of Out-Plane Wave by a Circular Cavity near the Right-Angle Interface in the Exponentially Inhomogeneous Media’. Wave Motion, vol. 72, 2017, pp. 354–362, https://doi.org/10.1016/j.wavemoti.2017.04.010

  67. De Aguiar, H. B., et al. ‘Polarization Recovery through Scattering Media’. Science Advances, vol. 3, no. 9, 2017, https://doi.org/10.1126/sciadv.1600743

WAVESIM ROADMAP

Stay tuned...

bottom of page